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Problem
Sampling networks always involves the act of
aggregation (e.g., when collecting longitudinal
samples of networks). We sutdy how the cumu-
lation window length effects the properties of the
aggregated network.

Basic Concepts
In our work the dynamic network is a series of
graphs, that is, DN = Gt(Vt, Et), where Et ⊆
Vt × Vt (∀t ≥ 0). The initial network, G0, is
considered as a parameter of the process. The
node set fixed and we worked with an about
constant number of edges. We assume that
the evolution of the network can be described
as the result of an edge creation and an edge
deletion process. We define Gt as the snapshot
network and

GT = (

T⋃
t=0

Vt,

T⋃
t=0

Et) for T ≥ 0.

as the cumulative network.

Models
ER1 G0 is a random graph. Add each non-
existing edge with pA, delete each existing edge
with pD probability.
ER2 G0 is a random graph. Add kA uniformly
selected random new edges and delete kD exist-
ing edges.
ER3 G0 is a random graph. Rewire kRW edges.
SPA (Snapshot preferential) G0 is a scale free
network. Add kA edges from a random node
with preferential attachment based on the snap-
shot network. Delete kD existing edges.
CPA (Cumulative preferential)G0 is a scale free
network. Add kA edges from a random node
with preferential attachment based on the cu-
mulative network. Delete kD existing edges.
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Dynamic Networks are Sensitive to Aggregation
Network characteristics are extremely sensitive to minor changes in aggregation length. In our
previous work [1] [2], we studied the cumulative properties of Elementary Dynamic Network models
over the complete time period (i.e., until they reach the stable point of a full network). Here we
focus on the more realistc domain of sparse (cumulative) networks. We find that even when snapshot
networks are stationary, important network characteristics (average path lenght, clustering,
betwenness centrality) are extremely sensitive to aggregation (window length).
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Degree Distribution Radically Changes
Degree distributions are exceptionally sensitive to the length of the aggregation window. The same
dynamic network may produce a normal, lognormal or even power law distribution for
different aggregation lenghts. The digree distribution of the snapshot and cumulative network
is inherently different. The following surfaces show the CPA model until it approaches the complete
network.
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Taking slices of the cumulative 3D charts shows us how the degree distribution changes. The log-log
charts below show the progression of these changes as the aggregation window gets larger.
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