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Auctions are mechanisms that formalise the rules with which automated trading
schemes can be conducted, and in this paper we model the interaction of bidder
and seller agents in sequential computerised auctions. We study the outcome of
strategies that a designated “special bidder” (SB) may follow in the presence
of a collection of other bidders in an English auction, under the assumption
that the SB can make bids based on its observation of the ongoing auction as
a collective system. In our model, bidding and sale events are continuous time
random processes with discrete state-space, where the state-space represents the
current value of the most recent bid. We obtain analytical solutions which allow
the evaluation of measures of interest to the SB such as the probability of winning,
the savings with respect to the maximum payable price in the event of a win, and
the expected waiting time to win. We examine the effects of the SB’s time to bid,
and study how its decisions may be selected so as to optimise the SB’s measures

of interest.
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1. INTRODUCTION

Computer systems and the Internet have enabled a
wide variety of automated trading schemes which are
in use for stocks, commodities, derivatives and other
financial instruments. More recently, the Internet
has also allowed individuals to buy and sell various
items in an open and easily accessible manner. Thus
we can envisage a future when large parts of the
economy will be driven by sequences of automated and
interconnected trading patterns.

Auctions are a convenient mechanism for formalising
the rules with which such automating trading schemes
can be conducted, and they have been widely used for
many centuries in human based trading and commerce.
In recent work the stochastic behaviour of collections
of bidders acting in an auction has been analysed
through the use of discrete state-space and continuous
time probability models [?]. The approach constructs
stochastic dynamical models of auctions and bidders,
and then obtains the steady-state behaviour to compute
significant properties of both the “one-shot” outcome,
and the long-run repetitive outcome of auctions. One-
shot properties include the probability distribution and
the expected sale price, while long-term properties
include the income per unit time obtained by the seller
over a large number of transactions. In [?] the model

has been extended to study a network of interconnected
auctions, where bidders are allowed to move freely
between auctions, and an analytical solution has
been obtained. These mathematical techniques, and
their variants, have also been successfully deployed in
other diverse range of problem areas: from biological
applications in modelling populations of viruses and
agents [?], to communication systems in minimising
packet travel time across a wireless network [?, ?], and
choosing adaptive routing decisions [?].

In reality, knowledge of the existence of opportunity
and availability to purchase similar goods in the
future may influence a bidder to choose to forgo the
opportunity of procuring a good at a high cost, and
instead wait in the hope of securing a better deal later.
We can also imagine situations where goods are reusable
resources that are not sold per se, but rented out and
returned to the seller at the end of some period, so that
bidder agents who are not in urgent need to obtain a
good immediately may defer a purchase. Interesting
work along these lines, where bidders exhibit rational
forward-looking behaviour when deciding strategies for
the current auction can be found in [?]. A possible
application for auctions of reusable goods in allocating
computing resources is given in [?].

When we discuss automated auctions, we will
invariably imagine software agents representing human
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counterparts in the digital marketplace [?], acting
autonomously and yet guided by its design objectives
to fulfill the interests of their owners to the best
possible extent. In such instances it is crucial that the
underlying communications infrastructure is designed
to allow and support the user, i.e. the agent, to set
the criteria for its service requirements. For example,
a bidder agent may have certain specific needs with
respect to its connectivity to the seller, and so may
request for a network path with the minimum overall
delay to the seller be established, or an agent physically
located on a mobile node may prefer a connection
that consumes the minimum power, or any weighted
combination of its other goals. In this regard, auctions,
or any digital marketplace activity for that matter,
will benefit from autonomic communications [?] where
emphasis is placed to insulate the user experience and
services from changes, whether predicted or not, to the
underlying infrastructure. In particular, a self-aware
network, as proposed and implemented in the cognitive
packet network (CPN) [?, ?, ?], accomplishes this by
online internal probing and measurement mechanisms
that are used for self-management, so that it adapts
itself to provide the user the best effort quality of service
(QoS). The CPN performs these corrective actions
by using random neural networks with reinforcement
learning [?, ?, ?], and finds newer routes with improved
QoS using genetic algorithms [?, ?]. In a wireless mobile
ad hoc network environment, where power efficiency is
an overriding concern, the CPN has been extended to
incorporate power-awareness [?], and the problem of
controlling the admission of new users into the network
while preserving the QoS of all users has been addressed
in [?].

Beyond ensuring QoS for users, at a different level
of abstraction, the ongoing research in autonomic
communications has a broader objective of providing
an intelligent platform for efficient interaction between
digital objects such as users and services [?], or as in our
context between buyer and seller agents. An important
aspect of applying the “intelligence”, as discussed in
[?], is in creating new knowledge based on collected raw
sensitive data, through a knowledge network which, in
turn, can be used to enhance economic efficiency. In this
example, it is shown that a good allocation efficiency
can be achieved in a trading application where the
aggregated knowledge is used to create new markets so
that sellers can respond to buyers’ needs as they arise.

Security is another vital feature in a communication
network, especially when transactions involving e-
commerce activities such as auctions are conducted;
the servers running these applications are easy targets
for attackers, either as a malicious act of sabotage
or for profitable gains. The denial of service (DoS)
attack is a particularly critical threat, since it is easy to
launch, and by its usually distributed nature, difficult
to protect against. Thus an autonomic approach to
defending the network, based on self-monitoring and

adaptive measures, has been suggested in [?], and
several biologically inspired DoS detectors have been
evaluated in [?, ?, ?].

In this paper we extend the work in [?] to study
the outcome of strategies that a designated bidder
may follow in an English auction, in the presence of
a collection of other bidders, under the assumption
that this “special bidder” (SB) observes the parameters
resulting from the auction as a collective (many bidders
and the seller) system. Note that in [?] bidders are
lumped together in a pool, where everyone shares a
similar behaviour; whereas in this work we propose
a generalisation in that the SB is allowed to have its
own activity (bidding) rate which may differ from the
other bidders’, and examine how the SB should select
its bidding rate in a self-serving manner.

We first sketch the model to be studied, and then in
Section 2 we analyse it in detail. The manner in which
the model provides performance measures of interest
to the SB and to the seller, is discussed in Section 3
where we first discuss how the SB can behave in order
to optimise outcomes that are in its best interest, and
provide numerical examples to illustrate the approach
and the model predictions. We then explore how the SB
can try to achieve balance and compete with the other
bidders in Section 4. Finally Section 5 generalises the
analysis to the case where the bidding rates depend on
the current price attained in the auction. Conclusions
are drawn in Section 6 where we also suggest further
work.

1.1. An English auction with n + 1 competing
bidders

Consider an English auction in which the SB
participates with n other bidders. We assume that a
single good is being sold, and that it has a maximum
valuation v > 0, so that none of the bidders will bid
beyond the sum v. Initially we assume that v is a fixed
and identical valuation for all of the bidders, but it is
easy (see [?]) to generalise the results to the case where
v is a random variable so that the actual valuation that
buyers associate with a good is known in terms of the
probability distribution of a random valuation V .

During the auction, each bidder may take some time
to consider the current highest offer before deciding
to place a new counter-offer. We assume that these
thinking times are exponentially distributed random
variables with parameters β and λ, for the SB and the
other bidders, respectively, so that we may distinguish
the behaviour of the SB from all the other bidders which
have a common statistical behaviour. All the bidders
can participate in submitting bids, except obviously
for the bidder who owns the current highest offer.
Furthermore we assume that all bids proceed with unit
increments with respect to the previous bid, in order to
minimally surpass previous highest bid.

It should be noted that, by allowing the SB to have its
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own bidding rate, our model generalises the previous [?],
and enables us to characterise the system outcomes as
a function of the “divergence” of the SB’s behaviour
from the other bidders. We examine these outcomes
from both the seller’s and the bidder’s interests. As
we would expect, if there is no divergence, i.e. we fix
β = λ, then this model reduces to the previous.

Once a bid is received, the seller considers the offer for
some time before accepting. If a higher bid is submitted
before this time expires, then the earlier offer is rejected
(and the previous highest bidder rejoins the bidder
pool), while the seller waits for another random time,
represented by an exponentially distributed random
variable with rate parameter δ.

On the other hand, if no new bid arrives by the end of
the seller’s waiting time, the auction concludes with a
sale to the current and hence highest bidder, and as
in [?], the seller is indifferent to the identity of the
bidder.

After the sale is successfully concluded, the seller
“rests” for some random time and then the auction
repeats itself as a statistically independent replica with
a population of n + 1 bidders. The rest time can be
thought of as the time spent in declaring the winner,
eliciting payment and allocating the item, followed by
the time spent in preparing the next item for sale.
We assume the rest times are exponentially distributed
with expected value r−1, and that successive rest times
are independent of all past events. Note that all of
our results will hold if we assume that the rest times
obey some general (i.e. not necessarily exponential)
distribution function.

2. THE MATHEMATICAL MODEL

The system that we have described is modelled as a
continuous time Markov chain {Xt : t ≥ 0} with state-
space

Xt ∈ Y = {0, O(l), R(l), A(O, l), A(R, l) : 1 ≤ l ≤ v}.
(1)

Initially we have X0 = 0 and the state valuations are
described as follows for t ≥ 0:

• Xt = 0, if no bid is placed at time t. Note
that this may occur after any one of the instants
ti+1 = inf{t : t > ti and Xti+1 = 0} when the
seller accepts a bid, and the auction restarts. We
set t0 = 0.

• Xt = O(l) where 0 < l ≤ v, if at time t the current
valuation of the bid is l and the current bidder is
not the SB, regardless of who placed the previous
l − 1 bids.

• Xt = R(l) where 0 < l ≤ v, if at time t the current
bidder is the SB and the valuation of his bid, i.e.
the current highest bid, is l.

• Xt = A(O, l), if at time t the auction has concluded
with a sale at price l to one of the “other” n bidders,
i.e. other than the SB, and the next auction has

not yet restarted.
• Xt = A(R, l), if at time t the auction has concluded

with a sale at price l to the SB, and the next
auction has not yet restarted.

Any bidder which is not the current highest bidder can
place a bid at rate β and λ, respectively, for SB and the
other bidders, as long as the current bid valuation has
not attained v. When the valuation v has been attained,
no further bids will be placed. Also, the transition rate
that denotes the start of a new auction, from either state
A(O, l) or A(R, l) to state 0 is r, and the transition rate
(denoting the seller’s decision to sell) from state O(l)
to A(O, l) and from R(l) to A(R, l) is δ. Note that
the seller cannot tell the difference between the SB and
the other bidders, and the transition rates in this first
model do not depend on the current valuation of the
highest bid.

For any state x ∈ Y , let the stationary probability of
the state be denoted by P (x) = limt→∞ P{ Xt = x };
then the balance equations satisfied by the stationary
probabilities are

P (O(1))((n− 1)λ+ β + δ) = nλP (0), (2)

P (O(l))((n− 1)λ+ β + δ) = (n− 1)λP (O(l − 1))

+ nλP (R(l − 1)), 2 ≤ l ≤ v − 1,

P (O(v))δ = (n− 1)λP (O(v − 1)) + nλP (R(v − 1)),

P (A(O, l))r = δP (O(l)), 1 ≤ l ≤ v,
P (R(1))(nλ+ δ) = βP (0),

P (R(l))(nλ+ δ) = βP (O(l − 1)), 2 ≤ l ≤ v − 1,

P (R(v))δ = βP (O(v − 1)),

P (A(R, l))r = δP (R(l)), 1 ≤ l ≤ v,

P (0)(nλ+ β) = r
∑

U=O,R

v∑
l=1

P (A(U, l)),

1 = P (0) +
∑

U=O,R

v∑
l=1

[
P (U(l)) + P (A(U, l))

]
.

After some algebra we can write

P (O(l)) = H(l)P (0), (3)

P (R(l)) = G(l)P (0),

P (A(O, l)) =
δ

r
H(l)P (0),

P (A(R, l)) =
δ

r
G(l)P (0),

The Computer Journal, Vol. ??, No. ??, ????



4 K. Velan

where

H(l) =



nλ

(n− 1)λ+ β + δ
, l = 1

(n− 1)λ

(n− 1)λ+ β + δ
H(l − 1)

+
nλ

(n− 1)λ+ β + δ
G(l − 1) , 2 ≤ l ≤ v − 1

(n− 1)λ

δ
H(l − 1) +

nλ

δ
G(l − 1) , l = v

G(l) =


β

nλ+ δ
, l = 1

β

nλ+ δ
H(l − 1) , 2 ≤ l ≤ v − 1

β

δ
H(l − 1) , l = v

and

P (0) =
rδ

rδ + (r + δ)(nλ+ β)
. (4)

In the following we will obtain the closed form
expression for H(l) where 1 ≤ l ≤ v − 1. Let us define
the constants

α1 =
nλ

(n− 1)λ+ β + δ
, (5)

α2 =
(n− 1)λ

(n− 1)λ+ β + δ
,

α3 =
(n− 1)λ

δ
,

α4 =
nλ

δ
,

α5 =
β

nλ+ δ
,

α6 =
β

δ
.

We can immediately identify the recurrence relation
in H(l) by substituting G(l) with its valuation as a
function of H(l − 1):

H(l) = α2H(l−1)+α1α5H(l−2), 3 ≤ l ≤ v−1, (6)

with initial values H(1) = α1 and H(2) = α1(α2 + α5).
Let R1, R2 be the roots of this recurrence equation,
then

R1,2 =
1

2

[
α2 ±

√
α2
2 + 4α1α5

]
.

We then have

H(l) =
1

2(R1 −R2)

[
(−α2 + 2α1 +R1 −R2)Rl1

+ (α2 − 2α1 +R1 −R2)Rl2

]
,

1 ≤ l ≤ v − 1,

(7)

and at the boundary l = v, the solution involves a
different set of coefficients:

H(v) = α3H(v − 1) + α4α5H(v − 2). (8)

Since G(l) is defined as a function of H(l − 1), we also
have

G(1) = α5, (9)

G(l) =
α5

2(R1 −R2)

[
(−α2 + 2α1 +R1 −R2)Rl−11

+ (α2 − 2α1 +R1 −R2)Rl−12

]
, 2 ≤ l ≤ v − 1,

G(v) = α6H(v − 1).

Notice that because all the αi > 0, α2
2 + 4α1α5 > 0

and R1 − R2 =
√
α2
2 + 4α1α5 > 0, we are assured of

the solution of these equations. Also, if the valuation v
is replaced by a random variable V with some general
distribution function Prob[V = v] = p(v) both for the
SB and the other bidders, then the analysis follows
directly from the previous discussion by computing
expectations with respect to the random variable V .

3. PERFORMANCE MEASURES OF IN-
TEREST TO THE SB AND TO THE
SELLER

Some measures of interest to the SB are:

1. whether the SB is actually able to purchase the
item it is seeking,

2. how quickly it can purchase the item,
3. whether it is able to minimise the cost of its

purchase or equivalently how much it saves with
respect to the maximum price that it is willing to
pay, and what is its savings per unit time with
respect to the maximum price v that it might have
paid.

On the other hand, the seller’s interest may be to
maximise its income from a sale, or to maximise its
income per unit time for a sequence of sales.

Note that P (0) is the ratio of the average time
elapsing from when the auction starts until the first bid
arrives, to the total average time τ an auction cycle lasts
(including the “rest time” of average valuation r−1 after
an auction ends). Since the system leaves state 0 only
when the first bid in an auction is made, the average
time spent in this state is simply the inverse of the rate
at which the first bid is made, i.e. [nλ+ β], and

P (0) =
Average time in state 0

τ
(10)

τ =
P (0)−1

nλ+ β

=
rδ + (r + δ)(nλ+ β)

rδ(nλ+ β)
.

When a sale is made, the expected income of the seller
is

I =

∑v
l=1 l[P (A(R, l)) + P (A(O, l))]∑v
l=1[P (A(R, l)) + P (A(O, l))]

, (11)

and the seller’s income per unit time is

ι =
I

τ
. (12)
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Concerning (1), the probability that the SB is the
bidder that makes the purchase at an auction, rather
than one of the other bidders, which we denote by π, it
is given by

π =

∑v
l=1 P (A(R, l))∑v

l=1[P (A(R, l)) + P (A(O, l))]
(13)

=

[ v∑
l=1

P (A(R, l))

]
·
[

r

nλ+ β
[P (0)]−1

]

=

[ v∑
l=1

P (A(R, l))

]
·
[
rδ + (nλ+ β)(r + δ)

δ(nλ+ β)

]
.

Hence regarding (2) the average time ψ that the SB
waits to win an auction is the inverse of its winning
rate or

ψ(v) =
τ

π
=

1

r
∑v
l=1 P (A(R, l))

.

Concerning (3) the average difference between the
valuation v for the good, and the price at which the
auction concludes given that the SB makes the purchase,
is denoted by

φ(v) =

∑v
l=1(v − l)P (A(R, l))∑v

l=1 P (A(R, l))
. (14)

3.1. Optimisation on the part of the SB

All that the SB can do, without reverting to deceit, is to
adjust its bidding rate β to the situation it is observing,
including the bid rate it observes concerning other
bidders, so as to optimise the performance measures
that it is selfishly and legitimately interested in.

In order to minimise ψ(v) it would suffice to take
β >> nλ. Then the SB raises its bid to the valuation
v very quickly so that it is always the winner, and π(v)
tends to 1. However this means that the SB would
be buying the good at its maximum price, rather than
driving a good bargain.

Thus a reasonable approach would be to choose a
valuation of β which maximises the SB’s return on the
auction, such as γ(v), the average savings per unit time
that the SB makes with respect to the maximum price
that it would pay, or specifically

γ(v) =
φ(v)

ψ(v)
= r

v∑
l=1

(v − l)P (A(R, l)). (15)

If v is replaced by the random variable V , the function
of interest to the SB is

Γ = E[γ(V )] = r

∞∑
v=1

v∑
l=1

(v − l)p(v)P (A(R, l)), (16)

and with the previous analysis we have

Γ = δ

∞∑
v=1

v∑
l=1

(v − l)p(v)G(l)P (0). (17)

Hence the SB could choose a valuation of β that
maximises Γ.

FIGURE 1. SB’s expected time to win with δ = 0.5, r = 1,
n = 10, V ∼ U(80, 100).

FIGURE 2. SB’s expected payoff with δ = 0.5, r = 1,
n = 10, V ∼ U(80, 100).

3.2. Numerical examples

We will now provide some numerical examples that
illustrate the predictions of the model. In all the
numerical results that are shown, we provide curves
for the case when all bidders including the SB follow
a symmetric bidding strategy, i.e. λ = β, and for the
more interesting case when the SB varies its bidding
rate while the rest have a fixed bidding rate. The topic
of mutual adaptation of all bidders to each other is yet
another important subject which is not discussed in this
paper.

Comparisons of the asymmetrical bidders case where
λ is constant, against the case with identical bidders
with λ = β are also shown in Figures 1, 2, 3, 4.
In Figure 1, as we would expect, we see that in the
asymmetric case it suffices for the SB to bid at a
sufficiently high rate (the x − axis) in order to reduce
its time until it can make a purchase (the y − axis).

In Figure 2 we study the quantity φ(v). It is
interesting to see that for fixed δ and λ, even if the
SB increases β to very high valuations (and hence wins
the bid), the “expected payoff” φ(v) does not tend to
zero and only drops slowly with β. However, if λ = β
and they increase, then the pay-off will tend to zero.

On the other hand, when buyers are interested in
purchasing multiple goods from the auction or when
they have a long term view of things, the expected
payoff per unit time γ(v) can be a good criterion
for decision making. Figure 3, with the y − axis in
logarithmic scale, shows that the expected pay-off per
unit time increases very rapidly with β, and furthermore
this effect is accentuated, and the pay-off is greater,
when the other bidders are relatively slower, i.e. have
smaller valuations of λ. Figure 3 shows that bidding
at a high rate increases the payoff rate for the bidder
and that it leads to diminishing returns of payoff per
time beyond some valuation of β. In other words,
when the SB’s actions do not impact the other bidders’
behaviour, it should bid quickly. This is contrary
to what we observe in online auctions such as eBay,
in which “sniping” is often used regardless of other
bidders’ strategies. Bidders wait until the last possible
moment before the auction expires to place their true
bids.

Indeed, it has been suggested that sniping is a good

FIGURE 3. SB’s expected payoff per unit time with
δ = 0.5, r = 1, n = 10, V ∼ U(80, 100).
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FIGURE 4. Expected income per unit time for the seller,
with δ = 0.5, r = 1, n = 10, V ∼ U(80, 100).

strategy [?, ?, ?] if the information on the closing
time of the auction is made public by the seller. But
this strategy has its shortcomings: in balancing the
benefits of submitting the very last bid against the risk
of bid being rejected for arriving after the auction has
ended, the bidders can misjudge. Technical issues such
as communication delay can aggravate the problem,
causing the item to sell at a lower price than what it can
fetch. It is desirable that the time spent in waiting for
the auction to close be shortened, thus saving time for
both seller and bidders; this is especially so when the
seller has many items to sell and time is of the essence.
Interestingly enough, a variant of the auction protocol
that was until recently used by Amazon tackles sniping
behaviour by automatic deadline extension: if any bid
is submitted within the last 10 minutes of the scheduled
closing time, the deadline is automatically extended
for another 10 minutes. This process continues until
10 minutes have passed since the last received bid,
at which time the auction concludes. While it may
succeed in discouraging sniping [?], this approach is
not always time effective: the scheduled deadline is
the best-case time within which the seller can hope
to make a sale, and in general it is likely that it will
take longer. This may not be suitable if the seller is
pressed for time. Note also that Amazon has stopped
running auctions as indicated in their Changes to the
Participation Agreement of April 14 20081.

Finally Figure 4 looks at things from the perspective
of the seller; for fixed λ we see that the SB’s bid rate
β affects the seller’s income per unit time, but only in
a moderate way. This is to be expected because after
the SB makes a bid, it must pause and the remaining
bidders then have a chance to bid. Since there are many
other bidders (in this example n = 10) they will have a
significant impact on the outcome, while the SB’s effect
remains limited.

4. WHEN THE SB TRIES TO KEEP UP
WITH OTHER BIDDERS

An interesting question arises if the SB adjusts its
bidding rate β in a manner proportional to the bidding
rate of all other bidders. From the state equations (2)
we can set a value µ representing the relative rate at
which both SBs and other bidders are bidding, with
respect to the other bidding and decision rates. Thus
the quantity µ illustrates the “similar” behaviour of SBs
and of the other bidders, and we have

µ ≡ β

nλ+ δ
=

(n− 1)λ

(n− 1)λ+ β + δ
.

1See http://www.amazon.co.uk/gp/help/customer/display.html
?ie=UTF8&nodeId=200239030 that we have accessed on 22-04-
2008

FIGURE 5. Expected time to win for SB when keeping
up with the other bidders for various λ and n. Other
parameters: δ = 0.5, r = 1.

FIGURE 6. Expected payoff per time for SB when keeping
up with the other bidders for various λ and n. Other
parameters: δ = 0.5, r = 1.

Then, the outcome of the auction for the SB will be
equivalent to that for the other bidders taken together.
In fact if n is large enough, this simplifies to

0 = β2 + β[nλ+ δ]− nλ[nλ+ δ], (18)

which yields

β ≈ nλ+ δ

2

[√
1 + 4

nλ

nλ+ δ
− 1

]
, (19)

or

µ ≈ 1

2

[√
1 + 4

nλ

nλ+ δ
− 1

]
. (20)

Figure 5 shows our model’s predictions on the
expected time to win for SB, while in figures 6 and
7 we show the payoff and income rates, respectively, as
functions of varying λ and δ, when SB follows this policy
in keeping up with the other bidders. In Figure 5, for
each case of n, there exists a minimum expected time
to win that occurs at some λ, and for increasing n this
minimal point occurs at smaller λ. Likewise, the highest
payoff per time is obtained at a distinct valuation
of λ and this decreases with n. These observations
correspond to increasing competition with n, and the
penalty suffered by SB for an increase in λ is larger
for systems with large n; the drop in payoff per time is
increasingly steeper with n (see Figure 6). On the other
hand, the seller benefits from large n and its income per
time has higher peaks, as shown in Figure 7.

5. PRICE DEPENDENT BIDDING

In many cases the current price attained by a good offers
useful information about its valuation, and about the
situation of other bidders. Thus a model with bidding
rates dependent on price was analysed in [?]. Here we
extend this approach to the behaviour of both the SB
and the other bidders.

We use β(l) and λ(l) to denote the bidding rates when
the price is at level l for the SB and the other bidders,
respectively. Likewise, δ(l) will be the seller’s decision
rate when price is at level l. By a simple extension of
the previous model, the steady state probabilities for

FIGURE 7. Expected income per time for the seller when
SB keeps up with the other bidders for various δ and n.
Other parameters: λ = 1, r = 1.
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the system satisfy

P (O(1)) =
nλ(0)

(n− 1)λ(1) + β(1) + δ(1)
P (0), (21)

P (R(1)) =
β(0)

nλ(1) + δ(1)
P (0),

P (O(l)) =
(n− 1)λ(l − 1)

(n− 1)λ(l) + β(l) + δ(l)
P (O(l − 1))

+
nλ(l − 1)

(n− 1)λ(l) + β(l) + δ(l)
P (R(l − 1)),

2 ≤ l ≤ v − 1,

P (R(l)) =
β(l − 1)

nλ(l) + δ(l)
P (O(l − 1)), 2 ≤ l ≤ v − 1,

P (O(l)) =
(n− 1)λ(l − 1)

δ(l)
P (O(l − 1))

+
nλ(l − 1)

δ(l)
P (R(l − 1)), l = v,

P (R(l)) =
β(l − 1)

δ(l)
P (O(l − 1)), l = v,

P (A(O, l)) =
δ(l)

r
P (O(l)), 1 ≤ l ≤ v,

P (A(R, l)) =
δ(l)

r
P (R(l)), 1 ≤ l ≤ v,

P (0) =
r

nλ(0) + β(0)

∑
U=O,R

v∑
l=1

P (A(U, l)),

1 = P (0) +
∑
U=0,R

v∑
l=1

[
P (U(l)) + P (A(U, l))

]
.

We will first give the general solutions for this system,
and then look at a plausible example of forms that the
dependent functions λ, β and δ might assume. Suppose,
following similar approach in (3), we let

P (O(l)) = H(l)P (0), 1 ≤ l ≤ v,
P (R(l)) = G(l)P (0), 1 ≤ l ≤ v.

We can then express the second order recurrence
relations in H(l):

H(l) = c1(l)H(l − 1) + c2(l)H(l − 2), 3 ≤ l ≤ v − 1,
(22)

where the coefficients c1 and c2 are

c1(l) =
(n− 1)λ(l − 1)

(n− 1)λ(l) + β(l) + δ(l)
, (23)

c2(l) =
nλ(l − 1)β(l − 2)

((n− 1)λ(l) + β(l) + δ(l))

× 1

(nλ(l − 1) + δ(l − 1))
,

and, the initial valuations will satisfy

H(1) =
nλ(0)

(n− 1)λ(1) + β(1) + δ(1)
(24)

H(2) =
1

(n− 1)λ(2) + β(2) + δ(2)

×
[

n(n− 1)λ(0)λ(1)

(n− 1)λ(1) + β(1) + δ(1)
+

nλ(1)β(0)

nλ(1) + δ(1)

]
.

Clearly, the difference equations (22) are linear
homogeneous with variable coefficients (23), and, hence,
the solution for H(l) can be expressed in closed form,
purely in terms of the coefficients[?, ?, ?]. First, define
a matrix:

Ml ≡
[

c2(l) c1(l)
c1(l + 1)c2(l) c2(l + 1) + c1(l + 1)c1(l)

]
.

(25)
Then, the solution sequence {H(l) : 1 ≤ l ≤ v− 1}, can
be represented as a product of matrices {Ml} and the
initial valuations:[
H(2j + 1)
H(2j + 2)

]
= M2j+1M2j−1 · · ·M3

[
H(1)
H(2)

]
(26)

=

j∏
i=1

M2i+1

[
H(1)
H(2)

]
, 0 ≤ j ≤

⌊
v − 2

2

⌋
.

Solving the above equation yields a set of two H(l),
one corresponding to an odd l and another to an even,
for every j. However, the solutions will not hold at
the boundary l = v, because it involves a different set
of coefficients as given in (21). Thus, the boundary
solution will be distinct and dependent on the previous
two valuations:

H(v) =
(n− 1)λ(v − 1)

δ(v)
H(v − 1)

+
nλ(v − 1)β(v − 2)

δ(v)δ(v − 1)
H(v − 2).

(27)

Similarly, the solutions for G(l) will be[
G(2j + 2)
G(2j + 3)

]
= N2j+2

j∏
i=1

M2i+1

[
H(1)
H(2)

]
,

0 ≤ j ≤
⌊
v − 3

2

⌋
,

(28)

where the matrix and the coefficients are

Nl ≡
[
d(l) 0

0 d(l + 1)

]
, and d(l) =

β(l − 1)

nλ(l) + δ(l)
. (29)

Again, at the boundaries l = 1 and l = v, the solutions
will be different:

G(1) =
β(0)

nλ(1) + δ(1)
, (30)

G(v) =
β(v − 1)

δ(v)
H(v − 1).
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FIGURE 8. Payoff per unit time in the price dependent
bidding model, against nominal bid rate β0 for various
pressure coefficients. Here n = 10, λ0 = 1.0, r = 1, δ = 0.5,
and σ = 0.

The solutions above are general, and will hold for
all price dependent functions. Suppose now, that the
dependencies are such that λ and β will decrease while
δ will increase, with the price level l. Specifically, let
a pressure coefficient κ ≥ 0 [?] to represent the degree
to which the attained price discourages bidding, while
σ ≥ 0 represents the effect of higher prices on the seller’s
tendency to sell:

β(l) =
β0

(l + 1)κ
, l ≥ 0, (31)

λ(l) =
λ0

(l + 1)κ
, l ≥ 0,

δ(l) = lσδ0, l ≥ 1,

where β0, λ0 and δ0 are fixed nominal rates. Although
we use the same κ for the SB and other bidders, it is easy
to relax this restriction. When κ = 1, we have the case
of “harmonic discouragement”, and if κ = 0 the bidders
are insensitive to price, and consequently, the whole
system reduces to the previously solved model (2).

Now, for functionals of form (31), the explicit
solutions for H(l) will follow (26) and (27), where the
coefficients c1 and c2 are

c1(l) =

(
l + 1

l

)κ
(n− 1)λ0

(n− 1)λ0 + β0 + lσ(l + 1)κδ0
, (32)

c2(l) =

(
l + 1

l − 1

)κ
nλ0β0

((n− 1)λ0 + β0 + lσ(l + 1)κδ0)

× 1

(nλ0 + lκ(l − 1)σδ0)
,

and the initial valuations become

H(1) =
nλ02κ

(n− 1)λ0 + β0 + 2κδ0
, (33)

H(2) =
3κ

(n− 1)λ0 + β0 + 2σ3κδ0

×
[

n(n− 1)λ0
2

(n− 1)λ0 + β0 + 2κδ0
+

nλ0β0
nλ0 + 2κδ0

]
.

For G(l), the solutions will follow the general forms (28)
and (30), where the coefficient

d(l) =

(
l + 1

l

)κ
β0

nλ0 + lσ(l + 1)κδ0
, (34)

and the initial valuation is G(1) = 2κβ0

nλ0+2κδ0
.

The examples in Figure 8 illustrate the effect of κ on
the expected payoff per unit time for the SB. We see
that the pressure coefficient does not make a difference
for relatively small bid rates β0, and that a higher

coefficient fetches a better payoff rate at higher bid
rates. Also, a small increase in κ from 0 to 0.2 yields
a bigger difference in payoff rates, than an equal-sized
increase from 0.8 to 1.0.

6. CONCLUSIONS

In this paper we have considered auctions in which
bidders make offers that are sequentially increasing in
value by a unit price in order to minimally surpass
the previous highest bid, and modelled them as
discrete state-space random processes in continuous
time. Analytical solutions are obtained and measures
that are of interest to the SB are derived.

The measures that can be computed in this way
include the SB’s probability of winning the auction, its
expected savings with respect to the maximum sum it is
willing to pay, and the average time that the SB spends
before it can make a purchase. An extension of the
model that incorporates price-dependent behaviours of
the agents has also been presented.

The model allows us to quantitatively characterise
intuitive and useful trade-offs between improving the
SB’s chances of buying a good quickly, and the price
that it has to pay, in the presence of different levels of
competition from the other bidders.

There are interesting extensions and applications
of these models that can be considered, such as the
behaviour of bidders and sellers that may have time
constraints for making a purchase, and the possibility
of the SB’s moving among different auctions so as
to optimise measures which represent its self-interest.
Another interesting area of study may be to examine
bidders who are “rich” and are willing to drive away
rivals at any cost, and who may create different
auction environments for bidders that have significantly
different levels of wealth. Yet another area of interest
concerns auctions where items are sold in batches of
varying sizes, with prices which depend on the number
of items that are being bought.
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